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Abstract--Hydrodynamic models for vertical slug flow usually consider a cylindrical Taylor bubble with 
a flat nose. Based on these models, two different methods have been used in the past for the calculation 
of the pressure drop. The first one incorporates an acceleration term, whereas this term is missing in the 
second one. In this work it is shown that the difference between the two methods results from the neglect 
of the nose shape. When the curved shape of the nose is considered the two methods yield identical results. 
Some approximate methods that do not consider the nose shape are tested and compared to the case where 
the nose shape is accounted for. 
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I N T R O D U C T I O N  

Any method for calculating the pressure drop in slug flow is based on the a priori  knowledge of 
the hydrodynamic parameters of the slug. The pressure drop is not determined unless the bubble 
length, the liquid slug length, the translational velocity, the liquid holdup and velocity of the liquid 
film, are specified separately. 

Hydrodynamic models for vertical slug flow were presented with various degrees of accuracy by 
Taitel et al. (1980), Taitel & Barnea (1983), Fernandes et al. (1983) (who proposed a detailed 
hydrodynamic model), Orell & Rembrand (1986) and Sylvester (1987). However, all the above 
models considered a cylindrical Taylor bubble with a uniform film thickness along the bubble. This 
simplification, although allowing a relatively simple solution, may lead to an inconsistent 
calculation of the pressure drop and affects the pressure drop results considerably. 

MOTIVATION 

Figure 1 shows schematically the geometry of a stable slug flow, where the Taylor bubble is 
assumed to be cylindrical with a flat nose. Since usually the gas density and viscosity are much 
lower than the liquid density and viscosity, the gas in the Taylor bubble is substantially at a 
constant pressure, the interfacial shear is negligible and the liquid film is assumed to flow 
downwards around the Taylor bubble as a free falling film. A frequently used method for pressure 
drop calculation is to divide the pressure drop along a slug unit into two parts (Fernandes et al. 

1983; Taitel & Barnea 1983; Sylvester 1987): the pressure drop along the body of the bubble, which 
is zero; and the pressure drop in the liquid slug which consists of 

(a) the pressure drop due to acceleration across the mixing zone in the front of the 
liquid s lug--AP~,  

(b) the pressure loss due to frictional effects in the liquid slug--APfs and 
(c) the pressure drop due to the hydrostatic head of the liquid slug--AP~. 

Thus, the total pressure loss across one slug unit becomes: 

APt =APa¢¢ + APfs + APse. [1] 

An alternative and equivalent method for pressure drop calculation is to use a global force 
balance between planes A-A and B-B (figure 1). The momentum fluxes in and out are identical 
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Figure 1. Slug flow with cylindrical Taylor bubbles. 

and the pressure drop across this control volume consists of the frictional pressure drop APfu and 
the hydrostatic pressure drop APgu along the slug unit, namely: 

AP t = APfu + APg., [2] 

where APfu is composed of the frictional losses along the liquid slug, APrs, and the frictional 
pressure drop along the falling film, APrr. The gravitational losses along the slug unit APg, are 
composed of APgs and the hydrostatic head of the liquid film APa. Thus, the total pressure drop 
is 

APt = APrs + APgs + APrr + APgr. [3] 

Since the liquid film flowing around the Taylor bubble is considered to be a free falling film with 
a negligible interracial shear and of a constant film thickness, APfr is balanced by AP~r which leads 
to the following total pressure drop between planes A-A and B-B: 

APt = APf, + APgs. [4] 

Comparing [1] and [4] shows that the acceleration term is missing in [4]. The inconsistency in 
pressure drop calculations by using the two equivalent methods results from the erroneous 
assumption of a cylindrical Taylor bubble with a constant void along the bubble. A curved nose 
of the gas bubble (figure 2) is essential for a consistent calculation of the pressure drop in slug flow, 
independent of the method used. It will be shown later that the acceleration term in the mixing 
zone of the liquid slug is equal to the sum of gravitational and shear losses in the liquid film adjacent 
to the curved nose of the Taylor bubble (figure 2), before the falling film reaches its terminal 
thickness. 

HYDRODYNAMIC PARAMETERS AND PRESSURE DROP CALCULATIONS 
FOR A TAYLOR BUBBLE WITH A CURVED NOSE 

A schematic diagram of the slug flow is presented in figure 2. Large Taylor bubbles of length 
lrB, move steadily upward with a translational velocity UT. These bubbles are long cylindrical voids 
having a curved nose and a flat tail. The Taylor bubbles are followed by liquid slugs containing 
small bubbles that are distributed almost uniformly over the pipe cross-section and over the length 
of the liquid slug, with a bulk void concentration, Es (=  1 - Rs). The liquid film is decelerated along 
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Figure 2. Slug flow structure. 

the Taylor bubble until it reaches a zero velocity and changes direction to a falling film. The film 
thickness is continually narrowed until it is stabilized under the action of the friction force at the 
wall (if the bubble is long enough). In this case the film attains its terminal film thickness fit, and 
the corresponding terminal velocity, Ua. This description of the Taylor bubble profile and film 
velocity in vertical slug flow has been experimentally verified by Nakoryakov et al. (1986) who 
measured the value and direction of the instantaneous wall shear stress and the liquid velocity along 
a slug unit. 

The slug unit length (1,) and the liquid holdup and velocity of the film at the bottom of the bubble 
will now be predicted on the basis of the above-described structure (figure 2). The effect of assuming 
a flat nose instead of a curved nose on the pressure drop calculations will be shown. 

Slug Flow Parameters 

The total volumetric flow rate, UMA, is constant across any cross-section, therefore: 

UM = U~s + U~.~ = U ~ ( 1  - E,) + U~E, [s] 

where UM is the total mixture velocity, ULS and Ucs are the liquid and gas superficial velocities, 
UL, is the velocity of the liquid in the liquid slug, UB is the velocity of the gas bubbles in the liquid 
slug and Es the void fraction of the liquid slug. 

The translational velocity of a Taylor bubble is assumed to be (Nicklin et al. 1962) 

Ur = 1.2UM + 0 . 3 5 ~ ,  [6] 

where D is the pipe diameter. 
The body of the liquid slug is assumed to behave as a fully developed bubble flow. The average 

axial velocity of the bubbles, UB, may be expressed by 

u,,= u~+ Uo, [7] 
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where U0, the bubble rise velocity due to buoyancy, is calculated by (Harmathy 1960) 

Uo = 1.53Fg(Pt ~ " °> : l ' " .  
L PL J 

Using [5] and [7], 

[8] 

V0(~ s 
UL, = UM- 1 -E~" [9] 

For large-diameter pipes, the gas velocity in the Taylor bubbles UG exceeds that of the dispersed 
bubble, UB (Taitel et al. 1980), in addition the liquid film seems to be essentially free of small 
bubbles. The physical picture that is consistent with the above description is that the dispersed 
bubbles in the liquid slug coalesce at the nose of the Taylor bubble, while gas bubbles are 
re-entrained from the back of the Taylor bubble into the liquid slug. 

A liquid mass balance over a slug unit results in 

fo ( ;o ) AULs = _1 (ULAL) dt -_1 UL, AL, h + ArUfdt  
T --T 

o r  

ls ~ ITB dx 
VLs= VLs(1 J0 Rrv'Z' [10] 

where z is the time for passage of a slug unit, l, is the length of the liquid slug, lTB the length of 
the Taylor bubble and/u the length of a slug unit, Rr is the local holdup of the liquid film (--ARIA), 
Ur is the corresponding average film velocity (positive for upward flow) and x is an axial coordinate 
along the film (figure 2). 

A liquid mass balance relative to a coordinate system that moves with a translational velocity, 
UT, yields 

Rf(UT -- Ur) -- R~(UT - UL,), [11] 

where P,, is the average liquid holdup within the liquid slug (=  1 -E.). 
Inserting [11] and [5] into [10] results in 

~ ITB d x  
Vos = V,¢, + U,R~ - UT J0 Rr-~f. [12] 

As has been mentioned before, for sufficiently long bubbles, gravity in the film is balanced by 
wall shear forces and the film thickness attains a terminal constant value, fit, which is given by 
(Wallis 1969) 

=kl-- l " (4r l  ", [13] 
-D LD3g(PL-- PG)PLJ \ '~L/ 

where F is the mass flow rate per unit peripheral length, (F = pLIUrt[ ~t), Uft is the terminal velocity 
of the developed falling film. For laminar flow, k and m equal 0.909 and 1.3, respectively. For 
turbulent film flow (Ref = 4F/lgL > 1000), Wallis suggested k = 0.115 and m = 0.6. Fernandes et al. 
(1983) strongly recommend the relation proposed by Brotz (1954) which suggests k = 0.0682 and 
m -2 /3 ,  these are the values used in this work. 

The liquid holdup in the film Rf is directly related to the film thickness, 6, by 

Rr = 4 6-- -- 4 [14] 
D 

Equation [13] together with [14], [11] and [9], can now be solved to yield the solution for the 
terminal film velocity Un and the terminal film thickness, 6t or the film holdup Rn. 

Two cases are considered. The first case is an approximate one in which viscous forces along 
the curved nose of the Taylor bubble are negligible [figure 2(a)]. This allows an analytical solution 
for the bubble shape, its length and the film velocity and thickness at the bottom of the bubble 
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(Uf,, 6f,). In the second case, a wall shear stress is considered also in the curved region of the Taylor 
bubble [figure 2(b)]. 

Case I 
The Taylor bubble in this case is assumed to consist of a nose region in which the liquid is 

accelerated under gravity, and a lower region in which gravity is balanced by wall shear stress and 
the film thickness is constant. The relative velocity of the liquid film in the nose region is accelerated 
from U~ = UT-  UL~ at the bubble's top to Urx = UT-  Uf at a distance x from the bubble top. 

Momentum and mass balances on the liquid film, relative to a coordinate system moving with 
a velocity UT, yields 

U~x = U~° = 2g( l - p°~x'pL,] [15] 

UrxRf = UroRs. [161 

Solving [15] and [16] for Rf yields 

RS 
Rf(x) = , [17] 

2gp " x 
( U T -  ULs): + 1 

where p '= 1 -PG/PL" 
This relation is applicable until the film reaches its terminal thickness (R~) (as predicted by [13]) 

at a distance xt [figure 2(a)] from the bubble top. 
The length of the Taylor bubble, ITB, is now found by using the mass balance [12]. For Taylor 

bubbles shorter than xt [figure 2(a)], the following equation is obtained: 

ITB _. _ ( U  T - -  ULs)  2 [" / 2gp'l~ ] 
Uos=UB(1--1~)-FUTP~ls.FITB UTIC~-fiT(~+--~TS)L41-t(UT_ULs)2 1 ; a [18] 

while for Taylor bubbles longer than x, the mass balance yields 

UGs = Us(1 --Rs)+ UrRsls+l T -  UTRs 1 + 1 gp ' (1 s "4-/TB) ( U T  - -  ULs) 2 

UT 
l, + ITS Rn(ITB - xt) .  [191 

The solution of [18] and [19] requires information regarding Rs and Is. These parameters were 
estimated using the method suggested by Barnea & Brauner (1985). 

Note that for the special case of a cylindrical Taylor bubble with a flat nose, [19] is reduced to 
the following commonly used equation: 

[20] ITB ULS - -  UL~& Uos  - -  UB E~ 

ITB "l" l s = Rf t  Uft  - UL s ~s ~--" UT ~ -- UT Rft" 

Case 2 
A more exact approach is to consider frictional losses also along the curved region of the Taylor 

bubble (that were previously neglected). 
The momentum equation [figure 2(b)] on the liquid film for this case is 

TwSw + (PL -- po)Rtg = PLRf(UT - -  Uf) d ( U r -  Ur) [21] 
A ax  

where 

A = ~f.PL U~lUd 5 .  [22] 
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The value o f f ,  was obtained from the WaUis correlation for the terminal film thickness, [13]. For 
turbulent film flow fw = 0.01015, while for laminar flow fw = 24/Rer. 

Using the mass balance [11] results in the following differential equation for Uf: 

dx [[(UT- Ur) 

where Ur is positive for upward film flow and negative for downward flow at x = 0, Ur = ULs and 
Rf = R s. 

The differential equation [23] is solved numerically for Ur(x) and the corresponding Rf(x) is 
found using [1 I]. The length of the Taylor bubble, lrB as well as Ufe and Rfe, at the bottom of the 
Taylor bubble are found now by satisfying the mass balance of [12]. 

The estimation of the above-mentioned hydrodynamic parameters, which depend on the actual 
bubble shape, enable one to perform a consistent calculation of the pressure drop in slug flow 
independent of the location of the cut planes of the control volume of the slug unit (figure 2). 

Pressure Drop Calculations 

Since the pressure drop along the Taylor bubble is negligible the total pressure loss across one 
slug unit is 

AP t = AP~ + aPfs + APo, [24] 

where APa~ is the pressure drop associated with the acceleration of the slow moving liquid in the 
film to the liquid velocity within the liquid slug: 

aPa  = [251 

The pressure loss due to frictional effects in the liquid slug is 

2fs  , , 2 1  
APt, = ~ p~ L/M is, [26] 

where 

Ps = PL Rs + pG(I -- Rs) [27] 

and f~ is the friction factor based on the mixture Reynolds number within the liquid slug. 
The pressure drop due to the hydrostatic head is 

APgs = p~gl~. [28] 

An alternative way to calculate the total pressure drop is to consider a global force balance over 
the control volume A-A-B--B (figure 2): 

fo " %' S.  dx [29] AP t = puglu + -~ , 

where p, is the average density of the slug unit, 

Pu = £uPO + (1 - -  Eu)p l  . .  [30]  

The volume average void fraction over a slug unit E. is 

AEgis + ('TB Ao dx 

'" = AJ°. l~ [311 

Substituting [12] for S~ r~ AG dx yields the following expression for Eu: 

Uos - UnE, + UrE, [32] 
E u ~--- UT 
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Equation [32] is a very interesting result by itself. It shows that the average void fraction of a slug 
unit depends on the liquid and gas flow rates (UGs, ULS), the bubble rise velocity U0, the 
translational velocity UT and the void fraction within the liquid slug Es, and it is independent of 
the bubble shape, the bubble length, the liquid slug length and the film thickness. 

Thus, for the calculation of the average hydrostatic pressure drop (Pug) one does not need to 
calculate the hydrodynamic parameters of the slug flow. However, in order to calculate the second 
term on the r.h.s, of [29] (the pressure gradient due to friction), one needs information regarding 
the distribution of the shear losses along a single slug unit. In order to calculate it the bubble profile 
Rr(x) as well as the axial film velocity distribution Ur(x) are needed. 

Note that for the case where a cylindrical bubble with a flat nose is assumed, [24] yields pressure 
drops which are large by APa~ compared to the pressure drop results obtained from [29], as has 
been demonstrated by [1] and [4] (which are equivalent to [24] and [29], respectively). However, 
when the shape of the nose is taken into account both [24] and [29] yields identical results. Referring 
to [21] and [11], the integrated momentum balance on the curved region of the film yields 

f f  + ~ x~ws,, pLRs(UT-- ULs)(ULs-- Ure) = (PL-- PG)g Rfdx 20 A dx. [33] 

As seen, the l.h.s, of [33] is equal to the acceleration losses in the mixing zone of the liquid slug, 
APa~ [25]. Namely, AP~ in [24] is equal to the sum of gravitational and frictional losses of the 
liquid film in the curved zone of the bubble. Thus, for a curved nose bubble the calculation of the 
pressure drop via [24] is identical to the calculation via [29] (a slight difference exists owing to the 
common neglect of the gas gravity within the Taylor bubble in [24]). However, for a cylindrical 
Taylor bubble with a flat nose the frictional losses in the liquid film are balanced by gravity and 
the use of [29] for the pressure drop calculation leads to [4], where the acceleration term in the 
mixing zone of the liquid slug is missing. 

So far two methods for the evaluation of the bubble shape have been presented, cases 1 and 2. 
Both cases lead to a consistent pressure drop calculation using either [24] or [29]. These two 
"consistent" modes of pressure drop calculation will be now compared with other approximate 
modes for the purpose of estimating the errors incurred using a cylindrical shape. 

In summary the following modes of pressure drop calculation in slug flow will be compared. 

Mode 1 
The bubble shape is evaluated according to case 1, where frictional losses in the bubble head 

zone are neglected. The pressure drop is calculated by using either [24] or [29], which yield identical 
results. 

Mode 2 ~' 
The bubble shape is evaluated according to case 2, where viscous forces are considered also in 

the nose zone. Pressure drop, again, is calculated by [24] or [29]. This is the most accurate method 
used here. 

Mode 3 
A cylindrical bubble with a fiat nose is considered. The pressure drop is calculated by [24], where 

the acceleration term is used. This method has been widely used in the literature (Fernandes et al. 
1983; Sylvester 1987). 

Mode 4 
A cylindrical bubble with a flat nose is considered. The pressure drop is calculated by using [29]. 

The use of [29] for a flat nose bubble is equivalent to the use of [24] and ignoring the term of 
acceleration (APa~¢). This method has been used by Orell & Rembrand (1986). 

Mode 5 
This is an approximate method for which no prior information regarding the slug geometry is 

needed. As has been shown, the average void fraction ~u is independent of the bubble shape, the 
bubble length, the liquid slug length and the film thickness, [32]. This allows an accurate calculation 
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Figure 3. Pressure drop calculations for slug flow. 
Air-water, 0.1 MPa, 25°C, 5emdia ,  Uts =0.01, Is= 16D. 
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Figure 4. Pressure drop calculations for slug flow. 
Air-water, 0.1 MPa, 25°C, 5 cm dia, ULS = 0.1, l, = ! 6D. 

of the gravitational pressure drop of the slug unit. However, the calculation of the frictional 
pressure drop requires information regarding the velocity distribution in the liquid along a slug 
unit. Several approximate methods for the average shear stress have been recommended in the 
literature (Spedding et  al. 1982). One of the commonly used methods is to evaluate the average 
wall shear stress as for a single equivalent fluid moving at the average mass velocity: 

( @ ) 2 ~ x x  f. 2 = ~ f ~  p. V M , [34] 

where 

ULsPL -I- UGspG 
VM = [351 

P, 

and fM is the wall shear stress based on the velocity, VM. Equation [34] is the frictional term in 
the drift flux model. 

By inserting the frictional term suggested by [34] into [29] the pressure drop in slug flow can be 
calculated without the a pr ior i  estimation of the slug structure. This method will be compared with 
modes 1 and 2 and the conditions under which this simple method is applicable will be tested. 

R E S U L T S  A N D  D I S C U S S I O N  

Figures 3-6 present a comparison between the five modes for pressure drop calculations. The 
comparison was performed for an air-water system over the whole space in which slug flow occurs. 
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The values of Is and R~ used here were evaluated by the method presented by Barnea & Brauner 
(1985). Is was taken as 16D and the value of P~ was calculated by 

0.40" I/2 2f, 0.72512. R~ = l -- O'O58 { 2[ (p~-S_ -~G )g ] (-~ U M "~ 215 { pL \ ) -- [36] 
. /  

Note that for large-diameter pipes (D > 0.05 m for air-water) the maximum value of Rs is 0.75 
(Barnea & Brauner 1985). 

As has been demonstrated, the "right" way of calculation is via mode 1 or 2. The two methods 
lead to almost the same results. This justifies the assumption that near the nose viscous forces are 
negligible. Note also that the liquid velocity in the nose zone changes direction, resulting in a 
negligible net contribution of the wall shear stress to the pressure drop. 

Mode 3, in which a cylindrical Taylor bubble is considered and the acceleration pressure drop 
is taken into account, overpredicts the results obtained by modes 1 and 2. The discrepancy is 
relatively small at low liquid and gas flow rates. At high liquid flow rates the discrepancy is more 
pronounced along the whole range of gas flow rates. These higher values stem from two reasons: 
(1) the calculated value of the slug unit, I, is slightly shorter for a bubble with a flat nose; and (2) 
the film velocity at the bottom of a flat nose bubble is always Ua, which is the maximum negative 
velocity of the liquid film--this increases the contribution of the acceleration term in [24] relative 
to that obtained for a curved nose bubble. For high liquid flow rates this tendency is more 
pronounced. 

Estimating a bubble with a flat nose, while ignoring the term of acceleration in [24], mode 4, 
underpredicts the pressure drop results compared to modes 1 and 2. However, the discrepancy now 
is lower, especially at high liquid flow rates. 

Mode 5 overpredicts the pressure drop calculation considerably at low liquid rates (figures 3 and 
4) while at high liquid flow rates the results are almost identical to those of modes 1 and 2 (figures 
5 and 6). The reason is that at high liquid flow rates the liquid holdup is high and the overall 
gravitational term p,g in [29] is dominant, thus the accurate evaluation of z, is not essential. While 
at low liquid flow rates the negative wall shear stress along the falling film that oppose the direction 
of gravity becomes significant. 

The sensitivity of the pressure drop to the liquid slug length is examined in figure 7. As would 
be expected, modes 4 and 5 are independent of the value of l, and modes 1 and 2 are insensitive 
to the choice of ls in the range l, = 10D to 30D (which is the observed experimental range for Is). 
On the other hand, mode 3, which assumes a flat nose and considers the acceleration term is 
sensitive to the choice of ls. A short Is increases the contribution of the acceleration pressure drop 
considerably and increases the error of this model. 
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Although the main objective of this work is to point out the theoretical inconsistency of the 
former methods that have been used for pressure drop calculations, it should be mentioned that 
the suggested method compares very well with experimental results over a wide range of liquid and 
gas flow rates (Akagawa et al. 1971). Figure 8 demonstrates this agreements for two liquid flow 
rates. As can be seen, mode 2 is very close to the experimental results, mode 3, which considers 
a bubble with a flat nose with acceleration, overpredicts the experimental results, especially for high 
liquid flow rates, while, mode 4, which uses a uniform film thickness but ignores acceleration, 
slightly underpredicts the experimental data. 

SUMMARY AND CONCLUSIONS 

I. The assumption of a cylindrical Taylor bubble with a flat nose may yield erroneous results for 
pressure drop calculations in vertical slug flow. 

2. A curved shape of the Taylor bubble's nose is essential for consistent calculations of the pressure 
drop, independent of the choice of the control volume that is used for this calculation (a global 
one or the liquid slug only). 

3. The approximate method which considers a bubble with a flat nose and incorporates the 
acceleration term (mode 3) always overpredicts the results obtained by modes 1 and 2, where 
a curved shape is assumed. The discrepancy is more pronounced at high liquid flow rates. At 
low liquid flow rates this approximation is reasonable. 

4. The approximate method which considers a bubble with a flat nose but ignores the acceleration 
term (mode 4) usually yields lower pressure drop results than those obtained by modes 1 and 
2. This method, however, is preferred to the method where the acceleration pressure drop term 
is used. 

5. The approximate method presented by mode 5, where no prior information regarding the slug 
geometry is needed, yields good results at relatively high liquid flow rates, whereas for low liquid 
flow rates this method yields pressure drop results that are higher than those predicted by the 
accurate methods (modes 1 and 2). 

6. The average liquid holdup is independent of the bubble shape, the bubble length and the liquid 
slug length, [32]. Thus, for the calculation of the hydrostatic pressure drop one does not need 
information regarding the slug structure. 

7. Finally, it should be stressed that the main purpose of this work is to clarify the inconsistency 
caused by the neglect of the nose curvature and the use of the acceleration term rather than 
to provide the quantitative numerical inaccuracies incorporated in the approximate calculations. 
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